IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 11, 2018, accepted February 27, 2018, date of publication March 14, 2018, date of current version April 18, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2815844

Evaluation of a Wireless Transport Network
Emulator Used for SDN Applications Development

ALEXANDRU STANCU“''-2, ALEXANDRU VULPE', (Member, IEEE), AND
SIMONA HALUNGA', (Member, IEEE)

! Telecommunications Department, Faculty of Electronics, Telecommunications and Information Technology, Politehnica University of Bucharest,
Bucharest, Romania
2Ceragon Networks, Bucharest, Romania

Corresponding author: Alexandru Stancu (alex.stancu@radio.pub.ro)
This work was supported in part by the Ministry of Innovation and Research, UEFISCDI, Project 5 Sol/2017 within PNCDI III, Integrated

Software Platform for Mobile Malware Analysis (ToR-SIM), in part by OFDM System based on FFT with non-integer argument
(FractOFDM) under Contract 213PED/2017, and in part by MultiMonD2 under Grant PN-III-P1-1.2-PCCDI-2017-0637.

ABSTRACT Software Defined Networking (SDN) is a paradigm that emerged in the networking industry
recently. Many standardization activities are still ongoing and having the right tools to support these efforts
is important. The Wireless Transport Emulator (WTE) was designed and implemented for supporting the
standardization endeavors of the Wireless Transport Project, part of the Open Networking Foundation (ONF).
WTE uses different technologies in order to simulate a wireless transport network, consisting of emulated
Network Elements, that expose two information models proposed by ONF: the Microwave Information
Model, TR-532, and the Core Information Model, TR-512. The tool is also extremely useful for SDN
application developers that want to create applications using the aforementioned information models,
because it eliminates their need of owning real, expensive, wireless transport devices in order to test the
functionality that they are developing. This paper describes the architecture of the WTE and then evaluates
the simulator with regards to some characteristics. Based on the measurements, conclusions about the

capabilities of the simulator are drawn.

INDEX TERMS Software-defined networking, wireless transport, open networking foundation.

I. INTRODUCTION
Computer networks have become, nowadays, complex and
increasingly challenging from the configuration and setup
point of view. Therefore, the need for key architectural
changes to the paradigm of networking has risen. Software-
Defined Networking (SDN) emerged around the year 2009,
from the work that was done in Stanford University in the
context of the OpenFlow project [1]. It is a revolutionary
approach in networking, which focuses on mitigating the
limitations proven by traditional networks. The concepts pro-
posed by this paradigm are not new, some being even 25 years
old, but the timing was not right at that time, thus their
adoption in the industry was not possible until now [2].
SDN proposes a novel network architecture, where the for-
warding state of the data plane is managed by a distant control
plane, decoupled from the data plane [3], [4]. In this way,
network devices become simple packet forwarding devices,
while the control logic or the control plane is implemented
in what is called the SDN controller. This has numerous
advantages, from being able to much more easily introduce

new policies in the network through software, to the ability of
central configuration of all network devices, instead of indi-
vidual configuration. In this way, SDN can provide enhanced
mechanisms for network management and configuration.
SDN can also be used for optimizing the radio (e.g. remote
radio units - RRUs and baseband units - BBUs) and transport
(e.g. optical cross connects, microwave links) resources in
future 5G systems [5], [6]. These resources can be managed
by centralized controllers, on top of which an orchestra-
tor may be placed. Therefore the SDN orchestrator has to
be exposed to an adequately detailed abstraction of these
resources [7], [8]. As expressed in [9]-[12], significant atten-
tion from the research community is given to advancing SDN
in all aspects of a network and in different network types, such
as wireless sensor, satellite, optical or vehicular networks.
Wireless Transport Group is part of the Open Networking
Foundation (ONF) and is focused on the development of a
microwave information model that would abstract the char-
acteristics of any wireless transport device. Several Proofs of
Concept (PoCs) were conducted by the group ([13]-[16]),

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

15870 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7550-9202

A. Stancu et al.: Evaluation of a Wireless Transport Network Emulator Used for SDN Applications Development

IEEE Access

where the model was tested and several use-cases that prove
the utility of the model were implemented successfully. This
led to the emergence of the first version of the Microwave
Information Model, which is a technical recommendation
by ONF, called TR-532 [17]. The main author contributed to
both the TR-532 and the PoCs, as expressed in the Contribu-
tions section in [17].

The main contribution of the paper is the development
and implementation of a Wireless Transport Emulator (WTE)
and then its evaluation, with regards to several characteris-
tics. WTE uses different technologies in order to simulate a
wireless transport network, consisting of emulated Network
Elements, that expose the Microwave Information Model,
TR-532, and the Core Information Model, TR-512 [18]. This
tool is extremely useful for SDN application developers that
want to create applications using the aforementioned infor-
mation model, because it eliminates their need of owning
real, expensive, wireless transport devices in order to test
the functionality that they are developing. WTE could be
used also by operators for testing SDN applications or inter-
actions between such applications, prior to deploying them
to production networks. Because of its flexibility and mod-
ularity, the simulator could be extended to accommodate
other information models. Its utility was already validated in
the 4" WT SDN PoC organized by ONF, as described in [16],
where it was successfully used for preparing the PoC and
can still be used for demonstrating the proposed use cases,
even though the PoC has ended, being installed in the ORBIT
environment [19]. Itis called the Wireless Transport Emulator
because it can be used to expose the information models
proposed by ONF (especially the Microwave Information
Model). The only characteristic of the wireless medium that
is being emulated at the moment is the bandwidth of a link,
which is influenced by the channel bandwidth and the modu-
lation technique used (attributes that can be modified through
the SDN controller). The WTE can be further enhanced to
emulate other wireless medium characteristics as well, such
as the influence of the frequencies on the connection, or the
wireless signal strength, but it is not straightforward and is
therefore not in the scope of this work.

This paper is organized as follows: section II makes an
overview of some tools that relate to WTE, but are used in
other types of networks, section III defines the architecture of
the emulator, section IV provides high level details about the
implementation and the technologies used and, then section V
describes the methodology used for evaluating the implemen-
tation and presents the evaluation results. Section VI presents
some advantages and disadvantages of the WTE, based on
the measurements and a comparison with mininet. Finally,
section VII concludes the paper.

Il. RELATED WORK

Development and testing of network applications or pro-
tocols can be done using different approaches. The first
one, but also the most expensive, is to use an experimental
testbed. This consists of a small network consisting of real

VOLUME 6, 2018

equipment to be used for the testing purposes. Several
testbeds exist: Emulab [20], 100G SDN Testbed, provided
by EsNet, as pointed out in [21] and [22], GENI [23], [24],
ORBIT [25], etc. As stated earlier, the main drawback of this
approach is that building such a network is expensive.

The second approach for testing network applications and
protocols is network simulation. This approach is usually
simple and easy to use and can be used on a laptop or personal
computer. It is flexible and scalable, the operations of real
devices and interaction between them being modeled and run
in a software program. The main drawback in this case is
the fidelity and the replicability of the results in the same
simulation conditions.

The third approach is network emulation. It differs from
the simulation approach through the real network applica-
tions or real-time operating systems (OS) that are used inside
the emulation environment. As opposed to simulations, where
the experiments are either faster or slower than real-time,
emulations are executed in real-time.

Not many network simulation or emulation tools exist in
the context of SDN. The most notorious and widely used
software-defined network emulator is mininet [26], [27].
It has the ability to emulate hosts, OpenFlow switches and
links between them. It is also able to use its own SDN
controller or to connect to a remote one. It is easy to use
and has a Python API that be utilized in order to customize
a network. Its main focus is the OpenFlow protocol ([28]),
and it does not support other southbound protocols
(e.g. NETCONF [29]).

Another network simulator that can be used in the con-
text of SDN is ns-3 [30]. It provides support only for the
OpenFlow southbound protocol, but, as stated in [31], it is
limited to an old OpenFlow version and not developed any-
more, because of the need to implement an SDN controller
inside the environment, instead of being able to work with
an external one. This simulator can be transformed in an
emulator by utilizing it in combination with virtualization
tools like QEMU, such that a NETCONF interface could also
be provided. The main drawback of this approach is that the
user is not allowed to utilize a specific proprietary YANG
model for his emulated device.

Another available tool for software-defined networks
emulation is EstiNet [31]. It is also based, as the previous
two, on OpenFlow as the single supported southbound pro-
tocol. It is mainly used for SDN application performance
testing, through its ability to provide such performance results
in a correct, accurate and repeatable manner.

All of the above tools, though, provide mainly Open-
Flow as a southbound interface. There are only a few tools
that emulate networks in the context of SDN and provide
a NETCONTF southbound interface, but none of them allow
the user to expose its own YANG models. One possible
cause can be that SDN is not a mature field yet and the
standardization process is still ongoing. SDN focused until
recently on altering the flow tables from network devices.
This implied using protocols like OpenFlow, which is

15871

IEEE Access

A. Stancu et al.: Evaluation of a Wireless Transport Network Emulator Used for SDN Applications Development

specifically tailored for this matter. NETCONF, on the other
side, can be compared with protocols like SNMP (Simple
Network Management Protocol), being designed mostly for
configuring the attributes of network elements.

The importance and popularity of the model driven
programmability and management of networks, achieved
through the NETCONF protocol, is increasing recently,
as expressed also by Medved et al. [32] . This is reflected
also in the research work done in many Standards Developing
Organizations (e.g. ONF, IETF, ETSI, etc.), which focuses
lately on developing data models in this context.

Only recently, Yang [33] information models that rep-
resent network devices have emerged and can be used
by NETCONF. For example, the YANG model used in
the Wireless Transport Network Emulator was just released
end of December 2016, by the Wireless Transport project,
as TR-532. The Information Modeling project defined the
Core Information Model (TR-512) in March 2015. These
two models represent the main pillars of the WTE, and it
allows SDN application development based on them, without
the need of owning real and expensive wireless transport
equipment. The YANG model representing TR-512 contains
information about the network element itself, it defines its
interfaces, internal cross-connections, details about the equip-
ment (cards, serial numbers, etc.). The YANG model asso-
ciated with TR-532 contains attributes that provide details
about the interfaces of the NE, such as: capabilities, con-
figuration, status, current problems, current and historical
performance values.

The authors in [34] depict the main concepts behind SDN
in transport networks. These are based on architectural mod-
els of network elements and transport networks themselves.
Because such networks are large and complex, having multi-
ple components, it is of great importance to define a network
model that covers all the aspects, is technology agnostic and
comprises functional entities, for being able to design and
control them. The transport networks representation is sim-
plified by layering it into a number of independent transport
layer networks. A client-server relationship exists between
such layer networks, the client being the signal being car-
ried, and the server being the layer network providing its
transport. Also for simplification purposes, the networks
can be partitioned into smaller disjoint subnetworks, that
are interconnected by links. The transport networks can be
divided into several components: topological components,
transport processing functions and transport entities. The
Core Information Model (TR-512), proposed by the Infor-
mation Model project, defined such a model, in which topo-
logical components and transport processing functions are
modeled using the ForwardingDomain and LogicalTermi-
nationPoint objects, while transport entities are represented
using the ForwardingConstruct object class. The Core Infor-
mation Model can be extended with fragments for specific
technologies, which is exactly the case of the wireless trans-
port networks, extended through the Microwave Information
Model (TR-532).

15872

It was chosen not to extend the existing mininet imple-
mentation with a NETCONTF interface, because of the lack
of flexibility that it provides when defining the topology.
WTE allows the user to define the topology to be simulated in
asimple JSON file, having a fixed format. With this approach,
one can easily define the network elements to be emulated,
along with interfaces for each, at different layers (as defined
by the Core Information Model) and links between them. The
two tools are complementary, mininet focusing on the Open-
Flow protocol, and WTE using NETCONF. Nevertheless,
they could be used in parallel and they could even be linked
(since they are both using veth pairs for representing links
between elements) such that, for example, traffic between
two mininet switches can pass through a wireless transport
network emulated with WTE.

lll. ARCHITECTURE

The Wireless Transport Emulator was designed for simu-
lating, on a single Linux host, a wireless transport network
topology, using different tools, while exposing the infor-
mation models developed by ONF (TR-532 and TR-512).
WTE is relying on a configuration file which specifies the
topology that the user wants to simulate. This file has a fixed
JSON format, which was defined according to the transport
layers of the Logical Termination Point (LTP) objects defined
in the Core Information Model. The format will be detailed
later on in the paper.

Several tools are used in the architecture of WTE, that add
up to the simulator solution. Each Network Element (NE) is
simulated through a docker container, which runs a Linux
image along with the NETCONF server, represented by the
Default Values Mediator (DVM) that was previously used in
WT SDN PoCs organized by ONF [14], [15] and detailed
by Stancu et al. [35]. This approach was chosen in order to
achieve an isolation at the file system level, so that multiple
DVM instances can run without issues on the same machine.
The interfaces that the user defines in the topology file are
represented as Linux interfaces inside each docker container,
and are used for creating the links between simulated devices.
Every NE has a management interface which connects to the
SDN controller. For obtaining isolation between these inter-
faces, so that the data traffic will not be forwarded through
this interfaces, docker networks are used. All these elements
form the architecture of the WTE. The usage of this tool in
the SDN context is illustrated in Fig. 1.

Docker is a tool which allows creating software containers
incorporating applications that can be run in an isolated envi-
ronment with regards to the applications from the host oper-
ating system, which launches those containers [36]. An appli-
cation and all its dependencies can be packed inside a docker
container. The resource consumption of such a container is
lower than that of a virtual machine, because the operating
system is not replicated, but only the libraries and processes
needed by the application being virtualized. As highlighted
in [37], docker can be utilized for generating reproducible
research activity. For these reasons, this tool is used also in

VOLUME 6, 2018

A. Stancu et al.: Evaluation of a Wireless Transport Network Emulator Used for SDN Applications Development

IEEE Access

SDN applications
LL=] =] 15
SDI_\I_ Cd ntrqller

NETCOMNF

Simulated wireless
connection

— —

Emulat& WTE
— |'
/I—\

E;s?ted NE
J I
Emulated NE

£

Emulated NE

FIGURE 1. Usage of the WTE in the SDN context.

the case of WTE, for obtaining the isolation in the file sys-
tem level, of the application that implements the NETCONF
server which exposes the desired information models, DVM.

Docker networks represent a feature provided by docker
which can isolate also the network stack associated with a
docker image. Thus, different containers can be run inside
separate docker networks, achieving network isolation for
them. The user can choose the details of such docker net-
works, like the network address or network mask.

For representing the links between simulated NEs a simple
method was chosen: virtual Ethernet pairs (veth pairs). This
is actually a tunnel between two Linux interfaces: the traffic
that is sent to one of the pair interfaces is forwarded to
the second interface in the pair, and vice versa. This represents
a frequently used method in working with containers [38].

From the design phase of the WTE a simple workflow
emerged: when the simulator is initialized, it analyses the
topology file. Then, it creates the docker networks associ-
ated to each network element defined in the topology and
afterwards it starts the necessary docker containers. The next
step is creating the Linux interfaces associated with different
transport layers of the LTP objects, as defined in the topology
file. The last step is creating links between those interfaces,
according to what is described in the topology, and running
the Command Line Interface (CLI).

The major components of the WTE are: the DVM, which
was adapted so it can be run in the environment proposed by
WTE, the JSON file containing the topology that we want to
simulate, another JSON configuration file containing several
parameters that detail how WTE should be configured and a
Python framework that glues everything together and imple-
ments the logic inside the simulator. This last component is
actually the core of the WTE.

The Python core of WTE is responsible for implementing
the infrastructure that the simulator needs and it is designed
to be modular and flexible. Is was developed using an
object oriented manner, having classes for every important

VOLUME 6, 2018

component: a general framework, network elements, inter-
faces, links, topologies, etc. This allows extending the WTE,
for example, with some other NETCONF server implemen-
tation. Because the architecture of the WTE is highly flexible
and modular, it can also be extended to accommodate other
YANG information models.

IV. IMPLEMENTATION

The implementation of the WTE is based on Python code
for the core and on C code for the NETCONF server. The
previous DVM solution, that was developed for the WT SDN
PoCs organized by ONF [14], [15], was adapted to comply
with this new approach. The code is open-source and can be
found on GitHub [39].

The implementation is presented gradually, in order to
construct the full picture of the WTE. First, the topology
and configuration files are presented. These files are parsed
to determine the parameters of the emulation and the topol-
ogy to be simulated. Then, we detail the component that
implements the NETCONF server (DVM), which exposes
the information models (TR-532 and TR-512). After that,
the component that glues everything together is described: the
Python framework, or the core of the WTE. Next, more details
about the emulator are given: how the interfaces defined in
the topology are represented, how the links between those
interfaces are constructed, including how the bandwidth of
a wireless connection is emulated, and finally how traffic can
be passed through the simulated topology.

A. CONFIGURATION FILES

WTE uses configuration files having a fixed format for offer-
ing a simple interface to the users. Two JSON files exist:
topology.json, that describes the topology that the user wants
to simulate and config.json, which contains the configurable
parameters of the simulator. The fixed structure of the topol-
ogy file is highlighted in Fig. 2.

For simulating a topology, the required information is com-
posed by the network elements, their interfaces and the links
between them. Having this in mind, the topology file will con-
tain a Network Elements JSON list object, which represents
a collection of NEs. Each NE will have its interfaces, on dif-
ferent LTP layers defined, along with several details needed
by the information models. In Wireless Transport networks,
in the simplest case, we can have wireless or Ethernet links
between the devices. In the Core and Microwave Information
Models terminology, this translates to Microwave Physical
Section (MWPS) layer, or the Ethernet Physical (ETY) layer
respectively. This leads to another JSON list object in the
topology file, which contains the links between interfaces,
at each of these layers.

B. DVM FOR WTE

The Default Values Mediator represents the NETCONF
server implementation that exposes the desired information
models: TR-512 and TR-532. The DVM implementation that
already existed was transformed into a docker image.

15873

IEEE Access

A. Stancu et al.: Evaluation of a Wireless Transport Network Emulator Used for SDN Applications Development

O network elements
= network element

. 1D
- type
O interfaces
+ layer
O LTP Objects

= 1D
= supported alarms
+ [LTP server] — optional
= physical port reference
+ conditional package
O Ethernet cross-connects
U FC Port Objects

« P
= VLIANID
+ host
* FC Route Object
O topologies
« MWPS Layer
0 links
= NEID
= LOPID
+ radio signal id
= ETY Layer
O links
+ NEID
= LOPID
= VLANID

O =JSON list object
+ =simple JSON object

FIGURE 2. Topology JSON file structure.

Because each docker container will represent a differ-
ent NE, a method was required for distinguishing between
the separate containers, from an SDN controller point of view,
after the simulator is initialized. This was done by modifying
the DVM to use the startup datastore capability provided
by the NETCONF server. This means that each server can
load its initial configuration from an XML file, at boot time.
The consequence in the WTE implementation was that, based
on the topology file, one XML file containing the details of
that specific network element was created and copied inside
the docker container for the NETCONF server to load when
initializing. This ensured that each simulated device starts
with a configuration as described in the topology file and the
SDN controller that will communicate with it will see that
configuration accordingly.

The DVM was capable of generating dummy NETCONF
notifications, so that SDN application developers could test
this channel of communication. This ability was improved
for the WTE implementation. The previous implementation
would read the details of an alarm from a configuration file
and, at a specific interval, it would send that notification
to whoever subscribed to this event. This mechanism was
improved now significantly. The DVM which runs inside the
docker container has now the ability to choose a random
interface that will send an alarm, from the interfaces defined

15874

on that specific NE. Afterwards, still randomly, it will choose
an alarm, from the supported alarms YANG attribute of that
interface, and, according to its previous state (if the alarm
was raised, it will be cleared, or vice versa), the notification
will be sent. This provides SDN application developers a
more realistic interaction with the simulated network from
the alarms point of view. At a specific interval, a problem
notification will be generated, based on the interfaces present
in the network and their supported alarms list, so this com-
munication channel can be tested.

C. WTE CORE

The core of the simulator is represented by the code that offers
the infrastructure that, along with the other tools, provides the
desired functionality: emulating a wireless transport network,
while exposing through a NETCONF interface the Core and
Microwave information models. It is implemented in Python,
using an object oriented approach, allowing extensibility in
a simple manner. This method is similar with the one used
in mininet [26], [40]. There are two main reasons for which
we chose not to extend the mininet solution, but to develop
a new one: (i) mininet is based on the OpenFlow protocol,
while we wanted a solution based on NETCONEF, that could
expose the Core and Microwave information models, and
(ii) the topology specification - in mininet, this is done either
through the predefined topologies available in the command
line or using the provided Python API; these approaches were
not flexible for the needs of WTE.

The class diagram of the WTE core is presented in Fig. 3.
The purpose of the design was creating a modular and flex-
ible architecture, that would allow readability of the code
and an easy extensibility. This is the reason that several
classes exist: the NetworkElement class is used for represent-
ing a wireless transport device. According to the topology
file, several instances of this class will be created. Each
will handle the creation of its associated docker container,
XML file containing its configuration and its interfaces. Sev-
eral classes for the interfaces exist, one for each of the layers
present in the information models. The Topology class is
used to represent the topologies defined in the configuration
file, at the different layers: MWPS and ETY. The Link class
represents a link between two interfaces.

A simplified sequence diagram that describes the initial-
ization of the simulator is illustrated in Fig. 4. The user will
issue a command for starting the simulator, giving the nec-
essary JSON files as input. After that, the framework of the
WTE will create the needed NetworkElement objects asso-
ciated with the devices that the configuration file contains.
The next step is creating the associated interfaces for each
of the NEs, according to the described topology. Afterwards,
the XML file associated with the device is created and then
the docker networks, docker container and the Linux inter-
faces are created. The last point is building the topologies
described by the user, which translates into creating the links
between the docker containers. WTE will then wait for com-
mands in a CLL

VOLUME 6, 2018

A. Stancu et al.: Evaluation of a Wireless Transport Network Emulator Used for SDN Applications Development

IEEE Access

Emulator

CLI

MgmtipFactoy

LJSeg

. | NetworkElement
EthCrossConnection [——

Link

Topologies

Mwpsinterface

Mwsinterface

MwEthContiinerinterface

EthCtpinterface

',,—tfs'és
L

ElectricalEtyinterface

FIGURE 3. Class diagram of the WTE core.

sd sequence
% Emulalo' Networj Interfaoi D Topolog' ‘ Link |
User . Elemen T . T T
start{topology.json, config json, | I Host Linux 1 1
I xml-files) i | 1 . 1 |
> ! ! machine ! !
I
create network slements(] | ' ! ' '
I \ I I
create interfacesl) o | ! ' i
o | I I
I
I I
_ build XML files() i | |
- \ I I
\ I I
1 \ 1 1
1 \ 1 1
create docker network() -l I 1
T =0 1 1
1 ! 1 1
create docker container(} oy ! !
T b } I I
1 I 1 1
copy YANG and XML files to docker container} | ! !
T o] I I
! 1 1 1
start docker containerf) o ! ' '
-
1 7 I I
1 \ 1 1
,,,,,,,,,,, 1 1 1
= I I | I I
T . K H I |
| build . | 1
T T 1 I
| I \ I
| 1 \ create links{) o |
I 1 \ -
| I |
| 1 | add OV bridgef}
I 1 ot
| I]
! ! add ports to OV bridge and docker container)
| i B Lj
| I T
| I \]
e e e . [1
| 1 | U !
SLI waiting for commands(] | | | i |
I 1 1 1
T | I | I I
| \ \ ! \ \

FIGURE 4. Simplified sequence diagram for the initialization of the WTE.

D. INTERFACE REPRESENTATION
Each interface of the NEs, or, in Core and Microwave Infor-
mation Models terminology, the LTP objects associated with
each device, regardless of their transport layer, will be rep-
resented as a Linux interface inside the docker container
associated with the simulated network element.

All LTP objects present in the topology file can be added as
Linux interfaces using the ip tool offered by Linux [41]. The
MWPS or ETY objects that are not used in a link between

VOLUME 6, 2018

two NEs are represented as dummy interfaces. If they are
part of a link, they will be defined as an interface from the
veth pair associated with that link. The LTP objects from
the other transport layers will mandatorily have a client-
server relationship, as defined in the Core Model. In order
to represent this inside the docker container, bond interfaces
are used. These represent logical points that can aggregate
several interfaces, mapping perfectly with the client-server
relationship defined in TR-512. It is the responsibility of the

15875

IEEE Access

A. Stancu et al.: Evaluation of a Wireless Transport Network Emulator Used for SDN Applications Development

WTE core to decide what type of Linux interface to create
and how to make the connections with the others, according
to the topology file.

E. LINKS BETWEEN NEs

The links between devices are represented, as stated previ-
ously, through virtual Ethernet pairs (veth pairs). Each link
will basically be a tunnel between two interfaces that are
part of separate docker containers, ensuring thus connectivity
between them. With this approach, if one interface represent-
ing one end of the link is disabled (set administratively down),
this will be reflected in the remote side, the link being down.
This behavior is consistent with real networks.

In order to make the WTE a real emulator of wireless
transport links, for the moment only the bandwidth charac-
teristics of the connection are altered in such a manner that
it will represent a link in the wireless medium. In the future,
other characteristics of this medium could be implemented.
As defined in TR-532 [17], the capacity of an interface
is influenced by several parameters that are present in the
Microwave Model, and can be seen in (1).

txCapacity
= txChannelBandwidth
* logr(modulationCurrent)xcodeRatexsymbRate (1)

where:
« txCapacity is the capacity of the transmitter of the inter-
face, in Mbps
o txChannelBandwidth is the bandwidth of the transmit
channel, in kHz
o modulationCurrent is the current modulation used,
in number of symbols
e codeRate is the percentage of the useful informa-
tion from the transmitted data (typically between 85%
and 95% [42])
o symbRate represents the typical symbol rate for wireless
transport devices and has a typical value of 85% [42].
This formula is being used inside the DVM. When one
of these attributes are changed, the new capacity of the
respective interface is computed and the interface bandwidth
is altered using the fc utility offered by Linux [43]. In this
manner, the user can utilize SDN Applications from the
controller and modify these values, and the capacity of the
link will be automatically changed in the simulator. This was
implemented and tested with the iperf3 tool [44], [45], which
is part of every docker container, allowing the injection of
traffic in the simulated network.

F. INJECTING TRAFFIC IN THE SIMULATED NETWORK

For offering a complete simulation tool, including the
validation of the topology and links that were created,
WTE provides the possibility of injecting traffic in the net-
work, between two points. For this ability, the tool iperf3 is
installed and used in each docker container.

15876

All the connections that were described before are imple-
mented at Layer 2. This means that the Linux interfaces inside
the docker containers do not use IP addresses (besides the one
used for management). The traffic generation is done between
two interfaces, one being the server and the other being the
client.

iperf3 allows generating TCP or UDP traffic, at the same
time providing statistics about the packet latency, jitter, band-
width of the channel used for communication or the percent-
age of lost packets.

V. EVALUATION AND RESULTS

For evaluating the WTE, four characteristics were considered
for measuring: the processing power that the simulator uses,
the RAM memory needed by the simulated topology, the ini-
tialization time and the disk space that the WTE uses. The
methodology about the measurements and the results, as well
as a comparison with mininet will be covered in this section.
The intention of the measurements is not to give the exact
precise values that the simulator requires, but to give some
insight about what part of the WTE (docker containers, Linux
interfaces, veth tunnels) influences the most the characteris-
tics that we measure and affects its scalability.

A. METHODOLOGY

For allowing the aforementioned measurements, some solu-
tions were developed in the simulator, in the WTE core.
Measuring the boot time implied using a timer provided by
Python. The measurement started after the configuration files
were read, and stopped after all the elements in the topology
were created, just before starting the CLI. This measured time
represents the initialization duration of the simulator and is
expressed in seconds.

A similar approach was used when measuring the disk
space used by the WTE. Before the simulator starts the initial-
ization phase, it queries the operating system about the free
space available on disk. After the initialization is finished,
a new interrogation is done to the operating system. The
difference between these two values represents the disk space
occupied by the WTE. We need to mention that when running
the evaluation, no other applications besides the simulator
were running in the systems (apart from the OS applications).
The disk spaced occupied by the WTE is given by the need of
the docker containers to represent their file systems inside the
host operating system. The computed value of the disk space
used by the simulator is expressed in MB.

The percentage of the used RAM is computed by the core
of the WTE. In calculating it, it neglects some values (e.g.
the memory needed by the core itself), because they are
not significant with regards to other values. The neglected
values are comparable with the others only when emulating
small topologies (e.g. under 20 simulated interfaces), and
do not increase with regards to the topology size, this being
the reason they are not considered for measuring. The only
memory allocations taken into account are represented by the
ones associated with the docker containers that are created by

VOLUME 6, 2018

A. Stancu et al.: Evaluation of a Wireless Transport Network Emulator Used for SDN Applications Development

IEEE Access

the simulator. In the CLI of the WTE, a new command that
computes this percentage was implemented. The computation
uses the information reported by the command docker stats,
provided by docker. This returns the RAM percentage utilized
by each running docker container and was used because its
results are accurate. The implementation of the CLI command
will add these values and return the sum. Thus, the value
returned will represent the RAM percentage used for simu-
lating the topology.

The computing of the CPU percentage used by the WTE
is triggered by the same command as for the RAM percent-
age. Its implementation uses also the docker stats command
provided by docker, but the approach is slightly different.
The difference appears because the CPU power is not used
continuously by the docker containers associated with the
simulated network elements. If, in the moment that we run
the command to query the percentage of the CPU used by the
containers, they did not have CPU time allocated, they could
have zero percent usage. A subsequent query might reveal
different results, other CPU percentages being allocated to
the docker containers. In order to make the measured value
relevant, a number of 10 queries were made with the docker
stats command, and an average of the returned results was
computed. Empirically we observed that if this number of
samples was increased, for example to 100, the difference
between the results was insignificant (around 1073). It must
be noted that these values can fluctuate, because the docker
engine can allocate CPU time to the docker containers accord-
ing to their needs, and this is not deterministic, because the
CPU usage can be slightly different for each emulated NE at
the moment of the measurement.

The result returned by the docker stats command is with
regards to a single CPU core. This means that, in the case of
intense utilization, we could have had returned values larger
that 100%. For this reason, the result is normalized to the
number of CPU cores of the machine where the simulator
runs. In a nutshell, the CPU percentage is computed with this
method: the OS is queried about the CPU percentage used
by the docker containers with the docker stats command, and
the sum of these percentages is calculated. This operation
is repeated 10 times, taking 10 samples, and the average is
computed. The value obtained is divided by the number of
CPU cores, resulting the final value.

The CPU usage and RAM percentage used were measured
only after the simulated devices were connected to the SDN
controller and the NETCONF connections were established
in the network. All of the aforementioned characteristics were
measured in different topologies that are typical for wireless
transport networks: ring, tree or mesh.

For the ring networks, topologies having a number of
devices from 10 to 200 were simulated, with a step size
of 10 elements. In this situation, each device would need
two air interfaces, for connecting to its neighbors. We chose
to add two Ethernet interfaces to each device, for granting
the ability of injecting traffic in the network. According to
the Core and Microwave information models, this resulted

VOLUME 6, 2018

TABLE 1. System characteristics of the systems where the WTE evaluation
was done.

Local ORBIT

Characteristic machine Cloud DT Cloud
oS Linux Linux Linux
. 4.4.0-93- 4.4.0-83- 4.4.0-89-
Kernel version . . .
generic generic generic
CPU X86_64 x86_64 x86_64
architecture
RAM 4 GB 8 GB 8GB
Disk storage 32 GB 80 GB 80 GB
CPU frequency | 2591.59 MHz 2 GHz 2500 MHz
CPU cores 4 4 4
Hypervisor VirtualBox VMware VMware

in 8 LTP objects associated with each NE, so a total of 8 Linux
interfaces in each docker container.

In the case of tree topologies, binary trees were considered,
so each network element needed three air interfaces (one for
the connection towards the root and two for the connections
to the leafs). An Ethernet interface was added to each device,
for providing the ability of injecting traffic in the network.
In this scenario, every docker container associated with an
NE will contain 10 Linux interfaces. In the simulations asso-
ciated with this topology, the depth of the tree was varied from
3 (meaning a total of 7 devices) to 7 (meaning 127 simulated
network elements).

For mesh topologies, the number of simulated network
elements varied from 3 to 10. Full mesh topologies differ
from the previous two cases with regards to the total number
of simulated interfaces: it does not depend anymore in a
linear manner on the number of NEs, but has a quadratic
increase. For a full mesh network with N network elements,
we simulated a total number of N(N — 1) interfaces, and
N(N — 1)/2 number of data links, respectively. Thus, for
N elements, each simulated device had N — 1 air inter-
faces. Also, an Ethernet interface was added to each device,
for providing the ability of injecting traffic in the network.
This resulted in varying the number of simulated interfaces
from 6 to 90.

B. EVALUATION ENVIRONMENTS

The measurements associated with the evaluation were done
in three different environments where WTE was installed:
locally, on a laptop having a Linux virtual machine (VM),
and in two cloud environments.

The first cloud environment was ORBIT [19], [25], [46]
and access to it was provided by AT&T. ORBIT is a wireless
network testbed designed for the research community and
used for achieving reproducible experiment results.

The second cloud environment was the one used in the
4 WT SDN PoC organized by ONF and was provided by
Deutsche Telekom (DT) [16]. This private DT Cloud, located
in Prague, offered virtual machines for the SDN controllers
and for the simulator environment.

The characteristics and resources that those system have
are described in Table 1.

15877

IEEE Access

A. Stancu et al.: Evaluation of a Wireless Transport Network Emulator Used for SDN Applications Development

soors Local i
—+Orbit Cloud 4
-%-DT Cloud A
> vk,
600 ,/ * 4 3
/ A X
& ; /
£ ¥
g 400 E
N ¥
: XK
1T AR
17
2
00 2

200 400 600 800 1000 1200 1400 1600
Number of simulated interfaces

FIGURE 5. Boot time versus the number of simulated interfaces in a ring
topology.

< Local
—+Orbit Cloud X
400 [-% DT Cloud

300

seconds

200 400 600 800 1000 1200
Number of simulated interfaces

FIGURE 6. Boot time versus the number of simulated interfaces in a tree
topology.

C. INITIALIZATION TIME

The initialization time represents the duration from the
moment that the simulator is started, until all the simu-
lated elements are created. The local machine has only 4GB
of RAM, so the simulations stop at 130 elements in the case
of the ring topology, because the emulator does not have
sufficient memory to further increase the number of NEs
(needed by the docker containers and simulated interfaces).

The variation of the boot time in seconds versus the number
of interfaces simulated can be seen in Fig. 5, 6 and 7.

It can be observed that, even though the frequency of the
CPU in the local system is higher than in the other systems,
the boot time is higher. This situation arises because of the
different hypervisor used in the different environments: on
the local machine, VirtualBox is used, while in the two cloud
environments, VMware, a solution tailored for server virtual-
ization, thus more capable, is used.

The initialization time depends in a linear manner on the
number of interfaces that the simulated topology contains.

15878

60 - Local
—+ Orbit Cloud
% DT Cloud ’
50
S
40 <
£ T
] N AN
® - s
30 — =
~ T
G =
20
B
Qg
50 100 150 200 250

Number of simulated interfaces

FIGURE 7. Boot time versus the number of simulated interfaces in a
mesh topology.

400 [Local P2
—+ Orbit Cloud e
% DT Cloud

N

300

200 j{%

100 e

AN
R

MB

200 400 600 800 1000 1200 1400 1600
Number of simulated interfaces

FIGURE 8. Used disk storage versus the number of simulated interfaces
in a ring topology.

Even if the values measured are high, reaching approximately
300 seconds for 1000 interfaces, they are acceptable, being
only the initialization values.

D. DISK STORAGE

The disk storage that the WTE needs was the next char-
acteristic measured in the evaluation process. This is given
by the docker containers that represent their file systems
in the host operating system, but also by the Linux inter-
faces simulated. The measurement results are illustrated
in Fig. 8, 9 and 10.

The results emphasize that the used disk storage depends
in a linear manner on the number of the interfaces that are
being simulated. In the ring topology case, for 960 emulated
interfaces, the disk storage used by the WTE reaches 240 MB,
in the case of the tree topology, for 1270 Linux interfaces,
approximately 330 MB are used. For the mesh networks,
the simulation reveals almost 65 MB used disk storage for a
number of 270 simulated interfaces. All these measurements

VOLUME 6, 2018

A. Stancu et al.: Evaluation of a Wireless Transport Network Emulator Used for SDN Applications Development

IEEE Access

- Local K
—+Orbit Cloud
300 [-% DT Cloud

200

[as)]
=

150 —

”gf
1'"
100 1
/
5;%/
200 400 600 800 1000 1200

Number of simulated interfaces

FIGURE 9. Used disk storage versus the number of simulated interfaces
in a tree topology.

- Local L
- Orbit Cloud P
60 |- % DT Cloud D
50 i
40 P
Q 2
= i
30 ~
4
-
20 ‘/‘,
10 f
50 100 150 200 250

Number of simulated interfaces

FIGURE 10. Used disk storage versus the number of simulated interfaces
in a mesh topology.

reveal an average of 0.25 MB per each Linux interface
created.

E. CPU USAGE

The previously measured characteristics are not relevant after
the simulator was initialized. The CPU and RAM usages are
more important, because they limit the topologies that can be
simulated on a system.

The CPU usage is represented as the percentage of the used
processing power from the total system processing power. For
example, if the WTE would be using 25% CPU power in a
system with 4 cores, it would mean that a core is entirely used
by the simulator. The measurement results for the CPU usage,
versus the number of simulated interfaces are highlighted
in Fig. 11, 12 and 13.

The results reveal that, even if the method of taking multi-
ple samples was used and an average was computed, the CPU
usage does not have a perfectly linear dependency on the
number of simulated interfaces. The trend, however, is linear.

VOLUME 6, 2018

<> Local '
40 |+ orbit Cloud ;
% DT Cloud
30
S ,
L ; x
o
[&] < A T~
i A A -
10 N 4 i~ Sk <A
R
P SRARRNE NS
Ol AT gtk
e >
200 400 600 800 1000 1200 1400 1600

Number of simulated interfaces

FIGURE 11. CPU usage versus the number of simulated interfaces in a
ring topology.

& Local /
—+Orbit Cloud /
20 [DT Cloud 7

@
i
K

CPU usage [%]
5
A

200 400 600 800 1000 1200
Number of simulated interfaces

FIGURE 12. CPU usage versus the number of simulated interfaces in a
tree topology.

We can observe that the two cloud environments have a sim-
ilar behavior. Some issues arise in the local measurements,
these inconsistencies appearing in the charts because of the
less capable hypervisor.

For 250 interfaces simulated, in a full mesh topology,
the CPU usage reaches approximately 3%. For 1200 inter-
faces, in the case of the ring topology, the CPU usage reaches
approximately 12% and in the case of tree topology, for the
same number of interfaces, the simulator utilizes almost 14%
of the CPU power. The results reveal that WTE does not use
a very high amount of CPU power, even in the case of large
topologies, in a close to idle state. If the SDN Controller will
start requesting data from all the simulated devices, then the
CPU usage will start becoming noticeable.

F. RAM USAGE

The last measured characteristic in the evaluation process is
represented by the RAM usage. This is described as the per-
centage of the memory used with respect to the total amount

15879

IEEE Access

A. Stancu et al.: Evaluation of a Wireless Transport Network Emulator Used for SDN Applications Development

& Local
—+ Orbit Cloud
- DT Cloud
4 7
&
G
- G
& 7 =
%3 » +/ -
g Es
2 ; i
o i/
2 3 - 4V v
s =
o
-
1 By — -
|~ ‘ < i

50 100 150 200 250
Number of simulated interfaces

FIGURE 13. CPU usage versus the number of simulated interfaces in a
mesh topology.

7%

- Local < I
—+Orbit Cloud X 4 715(
% DT Cloud 14 ?é‘ K
30 - J
X
4 %
F
£ < %
) B
g 20 ; %
s
= . 7
10 y >
3| A
i
200 400 600 800 1000 1200 1400 1600

Number of simulated interfaces

FIGURE 14. RAM usage versus the number of simulated interfaces in a
ring topology.

of RAM. This is the most important characteristic, which will
limit the scalability of the simulator. If in the case of the
CPU usage, if the WTE needs high processing power, it will
eventually get it from the OS and the simulator processes will
be further executed, even if the execution of the entire system
will be slow. In the case of the RAM, if the simulator will
further request memory and the system is unable to fulfill
its request, the execution of the WTE will be stopped by the
OS and the simulated topology will crash. The results of the
RAM usage versus the number of simulated interfaces are
highlighted in Fig. 14, 15 and 16.

The charts reveal a linear dependency between the RAM
used and the number of simulated interfaces. In the mesh
topology, for a number of 200 Linux interfaces, the RAM
usage reaches almost 5%. The tree topology reveals a percent-
age of approximately 24 for the RAM usage, when simulating
1000 interfaces. In the ring topology, for the same number of
Linux interfaces, the RAM usage reaches approximately the

15880

- Local
30 |+ Orbit Cloud
- DT Cloud
25
X 20
[}
o
©
(2]
S & L
215
o z.
4
7
10
2.
517
200 400 600 800 1000 1200

Number of simulated interfaces

FIGURE 15. RAM usage versus the number of simulated interfaces in a
tree topology.

1415 Local L
—+Orbit Cloud
% DT Cloud =
12
10
< X
(]
> 8
3 =
= =
< <
T 6
L
4
-
2
3 il
50 100 150 200 250

Number of simulated interfaces

FIGURE 16. RAM usage versus the number of simulated interfaces in a
mesh topology.

same value, of 24%. We can conclude that, regardless of the
simulated topology, WTE requires approximately 0.025% of
RAM for each simulated interfaces, and since we considered
the measurements from a system with 8 GB of RAM, this
would represent approximately 2 MB of RAM for each Linux
interface.

VI. DISCUSSION
A. ADVANTAGES AND DISADVANTAGES
The evaluation results highlight some interesting conclusions
about WTE. The variable that influences the most the behav-
ior of the simulator it is not the number of simulated network
elements, as one might find intuitive, but the number of
interfaces that the topology contains. The larger this number
is, the higher will be the initialization time, RAM used and
disk storage needed.

The initialization time of the simulator is rather high for
large topologies, reaching hundreds of seconds for networks

VOLUME 6, 2018

A. Stancu et al.: Evaluation of a Wireless Transport Network Emulator Used for SDN Applications Development

IEEE Access

containing thousands of interfaces. This time is not critical,
though, because, once running, the simulator does not need to
be reinitialized, unless the user wants to change the topology.
What this influences mostly is the user experience. This time
might not be optimizable any further, because the docker
engine does not allow parallel creation of containers.

The disk storage needed by WTE does not represent a
problem in current systems, even when simulating very large
topologies. For example, when emulating a topology con-
taining 4000 interfaces, approximately 1 GB of storage will
be used on disk, which should not be an issue in nowadays
machines.

The CPU usage is the measured characteristic that varies
the most and is the least predictable. We notice an increase
in usage with the number of network elements and with
the number of simulated interfaces. The CPU usage is not
very predictable, because the docker engine is responsible for
allocating processing power to each of the running containers,
according to its needs. During execution, these needs might
be influenced also by the SDN applications that are running
in the SDN controller and are requesting information from
the simulated devices.

The size of the topologies that can be simulated is influ-
enced mainly by the RAM available in the system where
WTE was installed. In a system having 4 GB of RAM, about
1000 interfaces can be simulated. Even though this would
mean, according to the previously described results, using
only 2 GB of the RAM, the simulator will not be able to
use more memory, because the operating system and maybe
some other applications will need RAM as well. For more
capable systems, that reach 8 GB of RAM, the number of
simulated interfaces can exceed 2500, because the percentage
of RAM needed by the OS is lower than in the previous
case, so the emulator has more to use. This number refers
to the Linux interfaces associated with the LTP objects from
the ONF information models. If we are referring only to
interfaces that are used for links between network elements
(such as air interfaces or Ethernet interfaces), considering
that such interfaces have also other LTP objects associated,
according to the information models, we can conclude that
around 800 such interfaces could be simulated.

B. COMPARISON WITH MININET

Most of the other simulators used in the context of SDN,
including mininet, rely on the OpenFlow protocol. Since the
Microwave Information Model was just recently released,
in December 2016, no other simulators offers it yet. We will
nevertheless compare WTE with mininet, even though their
utilizations are slightly different.

From an architectural point of view, the two simulators are
very much alike. They are both based on a Python frame-
work that handles the simulation environment: creating hosts,
switches or links between them, through virtual Ethernet
pairs. If, in the case of mininet, hosts are simulated as pro-
cesses, which are then connected to the network switches,
WTE emphasizes the simulation of network elements

VOLUME 6, 2018

and their functionality provided through the NETCONF
interface.

Both mininet and WTE use, after initialization, a command
line interface that waits for user commands. This CLI has
knowledge about the simulated topology and can send com-
mands to the emulated devices or can inform the user with
regards to details about their state.

Even if the protocols exposed are different, mininet using
OpenFlow and WTE basing on NETCONF, both simulators
use the concept of virtualization based on Linux contain-
ers [47]. In mininet, they are used natively, directly from
Linux. WTE uses docker for creating the Linux containers
that represent the network elements.

From the topology description point of view, the approaches
are different in the two simulators. Mininet offers the possi-
bility of starting the simulator from a terminal and to specify
through certain parameters the type of topology to simulate
(having some predefined topologies). The other possibility
is using its Python API and creating the topology directly in
the Python code. WTE has a different approach: describing
the topology to be simulated in a configuration file, using a
predefined JSON format. This eliminates the need for the user
to have previous programming experience with Python.

Functionally, both simulators use the same method for
representing network links, virtual Ethernet pairs, regardless
of the points that define the link: a host and a switch or two
switches, in mininet, or two network elements, in WTE.

In WTE, every device is represented as a docker container
which runs the NETCONF server that exposes the ONF infor-
mation models. In mininet, for representing the OpenFlow
switches, the Open Virtual Switch (OVS) solution is used,
which is executed natively in the environment where mininet
is installed (without using virtualization), or the user can
choose other OpenFlow software switch to be used. For this
reason, the initialization time, but also the resources needed
by WTE are larger that the ones used by mininet.

VIi. CONCLUSION

SDN is a paradigm that is gaining momentum in the net-
working industry, driven by organizations that focus on
accelerating its adoption through development of open stan-
dards and encourage open-source software ecosystems. The
remote programming of the forwarding plane is encouraged
through protocols like OpenFlow and NETCONF, having
well defined interfaces and information models that abstract
the underlying network.

Having the right tools to test the developed information
models or the SDN applications that are based on those
models is a key enabler for maintaining the momentum and
accelerate the adoption of SDN in the industry. Mininet is
an important tool for emulating networks that support the
OpenFlow protocol, but the industry was lacking an emula-
tor that would support also the NETCONF protocol. WTE
tries to close that gap by proposing an emulating framework
that exposes a NETCONF interface. It is focusing for the
moment on the wireless transport devices, implementing the

15881

IEEE Access

A. Stancu et al.: Evaluation of a Wireless Transport Network Emulator Used for SDN Applications Development

YANG models of ONF TR-532 and TR-512, but because of
its modularity and flexibility it can be extended to accommo-
date any YANG information model or any other NETCONF
server implementations.

We have proven that WTE represents a viable solution
for SDN application developers. It allows simulating differ-
ent topologies, which, depending of the capabilities of the
machine where the simulation environment is installed, can
have thousands of interfaces. In this manner, SDN application
developers can execute also scalability tests on their appli-
cations. Even though real production networks can contain
thousands of elements and tens of thousands of interfaces,
WTE is a first step in emulating such Wireless Transport
networks. WTE could be used also by network operators,
for testing new SDN applications for their networks, or even
test the interactions between several SDN applications and
their effect on the network. Future research can focus on
optimizing the WTE so that it can simulate even larger topolo-
gies, or finding a solution of running it in a distributed manner
on several systems.

REFERENCES

[1] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Communication Rev., vol. 38, no. 2,
pp. 69-74, 2008.

[2] N.Feamster, J. Rexford, and E. Zegura, ““The road to SDN: An intellectual
history of programmable networks,” ACM SIGCOMM Comput. Commun.
Rev., vol. 44, no. 2, pp. 87-98, Apr. 2014.

[3] D. Kreutz, F. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: A comprehensive survey,”
Proc. IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015.

[4] A. Stancu, S. Halunga, G. Suciu, and A. Vulpe, “An overview study of
software defined networking,” in Proc. 14th Int. Conf. Inform. Econ. (IE),
2015, pp. 50-55.

[5] 1. F. Akyildiz, P. Wang, and S.-C. Lin, “Softair: A software defined
networking architecture for 5g wireless systems,” Comput. Netw., vol. 85,
pp. 1-18, Jul. 2015.

[6] H. Wang, S. Chen, H. Xu, M. Ai, and Y. Shi, “SoftNet: A software
defined decentralized mobile network architecture toward 5G,” [EEE
Netw., vol. 29, no. 2, pp. 16-22, Mar./Apr. 2015.

[7] R. Vilalta, A. Mayoral, R. Mufioz, R. Casellas, and R. Martinez, ““Hier-
archical SDN orchestration for multi-technology multi-domain networks
with hierarchical ABNO,” in Proc. Eur. Conf. Opt. Commun. (ECOC),
Sep./Oct. 2015, pp. 1-3.

[8] R. Vilalta et al., “Hierarchical SDN orchestration of wireless and optical
networks with E2E provisioning and recovery for future 5G networks,” in
Proc. Opt. Fiber Commun. Conf. Exhib. (OFC), Mar. 2016, pp. 1-3.

[9] H.I.Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “A survey on software-
defined wireless sensor networks: Challenges and design requirements,”
IEEE Access, vol. 5, pp. 1872-1899, 2017.

[10] T.Li, H. Zhou, H. Luo, I. You, and Q. Xu, “SAT-FLOW: Multi-strategy
flow table management for software defined satellite networks,” IEEE
Access, vol. 5, pp. 14952-14965, 2017.

[11] J. Wu, Z. Ning, and L. Guo, “Energy-efficient survivable grooming
in software-defined elastic optical networks,” [EEE Access, vol. 5,
pp. 6454-6463, 2017.

[12] R. D.R. Fontes, C. Campolo, C. E. Rothenberg, and A. Molinaro, ‘“‘From
theory to experimental evaluation: Resource management in software-
defined vehicular networks,” IEEE Access, vol. 5, pp. 3069-3076, 2017.

[13] ONF. (Sep. 2015). Wireless Transport SDN Proof of Concept White
Paper. [Online]. Available: https://rs.opennetworking.org/wiki/download/
attachments/262144003/1st_Wireless%20Transport_PoC_White_Paper.
pdf?api=v2

[14] ONE. (Jun. 2016). Wireless Transport SDN Proof of Concept 2 Detailed
Report. [Online]. Available: https://rs.opennetworking.org/wiki/
download/attachments/262144003/2nd_Wireless%20Transport_PoC_
‘White_Paper.pdf?api=v2

15882

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

ONF. (Dec. 2016). Third Wireless Transport SDN Proof of Concept
White Paper. [Online]. Available: https://rs.opennetworking.org/wiki/
download/attachments/262144003/3rd_Wireless%20Transport_PoC_
White_Paper.pdf?api=v2

ONF. (Aug. 2017). Fourth Wireless Transport SDN Proof of Concept
White Paper. [Online]. Available: https://rs.opennetworking.org/wiki/
download/attachments/262144003/4th_Wireless_Transport_PoC_
White%20Paper.docx ?api=v2

ONF. (Dec. 2016). TR-532 Microwave Information Model, Version 1.0.
[Online]. Available: https://3vf60mmveqlg8vzn48q2071a-wpengine.
netdna-ssl.com/wp-content/uploads/2013/05/TR-532-Microwave-
Information-Model-V1.pdf

ONF. (Mar. 2015). TR-512 Core Information Model (CoreModel),
Version 1.0. [Online]. Available: https://3vf60mmveqlg8vzn48q2071a-
wpengine.netdna-ssl.com/wp-content/uploads/2014/10/Core_Information_
Model_V1.0.pdf

D. Raychaudhuri et al., “Overview of the ORBIT radio grid testbed for
evaluation of next-generation wireless network protocols,” in Proc. IEEE
Wireless Commun. Netw. Conf., vol. 3. Mar. 2005, pp. 1664—1669.

B. White er al., “An integrated experimental environment for dis-
tributed systems and networks,” ACM SIGOPS Oper. Syst. Rev., vol. 36,
pp- 255-270, Dec. 2002.

K. Roberts, Q. Zhuge, I. Monga, S. Gareau, and C. Laperle, ‘“Beyond
100 Gb/s: Capacity, flexibility, and network optimization,” J. Opt.
Commun. Netw., vol. 9, no. 4, pp. C12-C24, 2017.

ESnet. (Oct. 2017). 100G SDN Testbed. [Online]. Available:
https://www.es.net/network-r-and-d/experimental-network-testbeds/100g-
sdn-testbed/

M. Berman et al., “GENI: A federated testbed for innovative network
experiments,” Comput. Netw., vol. 61, pp. 5-23, Mar. 2014.

L. Liu et al., “Experimental demonstration of OpenFlow-based dynamic
restoration in elastic optical networks on GENI testbed,” in Proc. Eur.
Conf. Opt. Commun. (ECOC), Sep. 2014, pp. 1-3.

M. Ott, I. Seskar, R. Siraccusa, and M. Singh, “ORBIT testbed soft-
ware architecture: Supporting experiments as a service,” in Proc. Ist Int.
Conf. Testbeds Res. Infrastruct. Develop. Netw. Commun. (Tridentcom),
Feb. 2005, pp. 136-145.

B. Heller, “Reproducible network research with high-fidelity emulation,”
Ph.D. dissertation, Dept. Comput. Sci., Stanford Univ., Stanford, CA,
USA, 2013.

B. Lantz and B. O’Connor, “A mininet-based virtual testbed for distributed
SDN development,” ACM SIGCOMM Comput. Commun. Rev., vol. 45,
no. 4, pp. 365-366, 2015.

ONF. (Dec. 2009). OpenFlow Switch Specification, Version 1.0.0.
[Online]. Available: https://3vf60mmveqlg8vzn48q2071a-wpengine.
netdna-ssl.com/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
Network Configuration Protocol (NETCONF), document RFC 6241,
Jul. 2011.

G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in Mod-
eling and Tools for Network Simulation. Berlin, Germany: Springer, 2010,
pp. 15-34.

S.-Y. Wang, C.-L. Chou, and C.-M. Yang, “EstiNet openflow net-
work simulator and emulator,” IEEE Commun. Mag., vol. 51, no. 9,
pp. 110-117, Sep. 2013.

J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards a
model-driven SDN controller architecture,” in Proc. IEEE 15th Int. Symp.
World Wireless, Mobile Multimedia Netw. (WoWMoM), Jun. 2014, pp. 1-6.
YANG—A Data Modeling Language for the Network Configuration Pro-
tocol (NETCONF), document RFC 6020, Oct. 2010.

ONF. (Mar. 2016). SDN Architecture for Transport Networks. [Online].
Available: https://3vf60mmveq1g8vzn48q2071a-wpengine.netdna-ssl.
com/wp-content/uploads/2014/10/SDN_ Architecture_for_Transport_
Networks_TR522.pdf

A. Stancu, A. Vulpe, O. Fratu, and S. Halunga, “‘Default values mediator
used for a wireless transport SDN proof of concept,” in Proc. IEEE Conf.
Standards Commun. Netw. (CSCN), Oct. 2016, pp. 1-6.

D. Merkel, “Docker: Lightweight linux containers for consistent develop-
ment and deployment,” Linux J., vol. 2014, no. 239, p. 2, 2014.

R. Chamberlain and J. Schommer. (2014). Using Docker to Sup-
port Reproducible Research. [Online]. Available: https://ndownloader.
figshare.com/files/1590657

J. Claassen, R. Koning, and P. Grosso, “Linux containers networking:
Performance and scalability of kernel modules,” in Proc. IEEE/IFIP Netw.
Oper. Manage. Symp. (NOMS), Apr. 2016, pp. 713-717.

VOLUME 6, 2018

A. Stancu et al.: Evaluation of a Wireless Transport Network Emulator Used for SDN Applications Development

IEEE Access

[39] A. Stancu. (2017). Wireless Transport Emulator. [Online]. Available:
https://github.com/Melacon/WirelessTransportEmulator

[40] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proc. 9th ACM SIGCOMM
Workshop Hot Topics Netw., 2010, p. 19.

[41] A. N. Kuznetsov, “Ip command reference,” Inst. Nucl. Res., Moscow,
Russia, Tech. Rep. iproute2-ss020116, 1999.

[42] G. Kizer, Digital Microwave Communication: Engineering Point-to-Point
Microwave Systems. Hoboken, NJ, USA: Wiley, 2013.

[43] W. Almesberger, “Linux network traffic control—Implementation
overview,” Ecole Polytechnique Federale de Laussane, Laussane,
Switzerland, Tech. Rep., 1998.

[44] (2017). IPERF—The Ultimate Speed Test Tool for TCP, UDP and SCTP.
[Online]. Available: https://iperf.fr/

[45] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs. (2005).
IPERF—The TCP, UDP and SCTP Network Bandwidth Measurement Tool.
[Online]. Available: http://dast.nlanr.net/Projects

[46] ORBIT. Open-Access Research Testbed for Next-Generation Wireless
Networks (ORBIT). Accessed: Nov. 22, 2017. [Online]. Available:
http://www.orbit-lab.org/

[47] N.Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown, ‘““‘Repro-
ducible network experiments using container-based emulation,” in Proc.
8th Int. Conf. Emerg. Netw. Exper. Technol., 2012, pp. 253-264.

ALEXANDRU STANCU received the B.S. degree
in electronics and telecommunications from the
University Politehnica of Bucharest, Romania,
in 2012, and the M.S. degree in electron-
ics and telecommunications from the University
Politehnica of Bucharest in 2014, specializing
in networks and software for communications,
where he is currently pursuing the Ph.D. degree
in electronics and telecommunications, with a the-
sis topic on software-defined networking. He is a
Software Engineer with Ceragon Networks. His research interests include
software-defined networking, computer networks, security, wireless trans-
port, and mobile communications.

VOLUME 6, 2018

ALEXANDRU VULPE (M’12) received the
Ph.D. degree in electronics, telecommunications
and information technology from the University
Politehnica of Bucharest, Romania, in 2014. His
research interests include wireless sensor net-
works, mobile communications, security, qual-
ity of service, radio resource management, and
mobile applications. His publications include over
50 papers published in journals or presented at
international conferences. He has participated as
a Researcher in a number of national or international projects in the area
of security and Internet of Things, such as Reconfigurable Interoperability
of Wireless Communications Systems, NATO Science for Peace Research
project from 2007 to 2010, eWALL—eWall for Active Long Living (FP7
project, from 2013 to 2016), and Optimization and Rational Use of Wireless
Communication Bands, NATO Science for Peace Project, from 2013 to 2015.

SIMONA HALUNGA (M’00) received the M.S.
degree in electronics and telecommunications in
1988 and the Ph.D. degree in communications
from the University Politehnica of Bucharest,
Bucharest, Romania, in 1996. From 1996 to 1997,
she followed post-graduate courses in manage-
ment and marketing organized by the Romanian
Trade and Industry Chamber and the University
Politehnica of Bucharest, in collaboration with
Technical Hochschule Darmstadt, Germany. From
1997 to 1999, she was a Visiting Assistant Professor with the Electrical
and Computer Engineering Department, University of Colorado at Colorado
Springs, USA. Since 2006, she was a Full Professor with the Telecom-
munications Department, Faculty of Electronics, Telecommunications and
Information Technology, University Politehnica of Bucharest. She has pub-
lished over 180 papers in different scientific journals or in the proceedings
of different scientific conferences and participated in several nationally-
funded, NATO Science for Peace and European research projects. Her
research interests include multiple access systems and techniques, digital
communications, communications systems, and digital signal processing for
telecommunications. She was the Director of the Scalable Radio Transceiver
for Instrumental Wireless Sensor Networks-Sarat nationally-funded research
project from 2012 to 2016.

15883

	INTRODUCTION
	RELATED WORK
	ARCHITECTURE
	IMPLEMENTATION
	CONFIGURATION FILES
	DVM FOR WTE
	WTE CORE
	INTERFACE REPRESENTATION
	LINKS BETWEEN NEs
	INJECTING TRAFFIC IN THE SIMULATED NETWORK

	EVALUATION AND RESULTS
	METHODOLOGY
	EVALUATION ENVIRONMENTS
	INITIALIZATION TIME
	DISK STORAGE
	CPU USAGE
	RAM USAGE

	DISCUSSION
	ADVANTAGES AND DISADVANTAGES
	COMPARISON WITH MININET

	CONCLUSION
	REFERENCES
	Biographies
	ALEXANDRU STANCU
	ALEXANDRU VULPE
	SIMONA HALUNGA

